Compactifications, Hartman functions and (weak) almost periodicity

نویسندگان

  • Gabriel Maresch
  • Reinhard Winkler
چکیده

In this paper we investigate Hartman functions on a topological group G. Recall that (ι, C) is a group compactification of G if C is a compact group, ι : G → C is a continuous group homomorphism and ι(G) ⊆ C is dense. A bounded function f : G 7→ C is a Hartman function if there exists a group compactification (ι, C) and F : C → C such that f = F ◦ ι and F is Riemann integrable, i.e. the set of discontinuities of F is a null set w.r.t. the Haar measure. In particular we determine how large a compactification for a given group G and a Hartman function f : G→ C must be, to admit a Riemann integrable representation of f . The connection to (weakly) almost periodic functions is investigated. In order to give a systematic presentation which is self-contained to a reasonable extent, we include several separate sections on the underlying concepts such as finitely additive measures on Boolean set algebras, means on algebras of functions, integration on compact spaces, compactifications of groups and semigroups, the Riemann integral on abstract spaces, invariance of measures and means, continuous extensions of transformations and operations to compactifications, etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEMIGROUP ACTIONS , WEAK ALMOST PERIODICITY, AND INVARIANT MEANS

Let S be a topological semigroup acting on a topological space X. We develop the theory of (weakly) almost periodic functions on X, with respect to S, and form the (weakly) almost periodic compactifications of X and S, with respect to each other. We then consider the notion of an action of Son a Banach space, and on its dual, and after defining S-invariant means for such a space, we give a...

متن کامل

m at h . FA ] 1 7 D ec 2 00 7 Compactifications , Hartman functions and ( weak ) almost periodicity

In this paper we investigate Hartman functions on a topological group G. Recall that (ι, C) is a group compactification of G if C is a compact group, ι : G → C is a continuous group homomorphism and ι(G) ⊆ C is dense. A bounded function f : G 7→ C is a Hartman function if there exists a group compactification (ι, C) and F : C → C such that f = F ◦ ι and F is Riemann integrable, i.e. the set of ...

متن کامل

ar X iv : m at h / 05 10 06 4 v 1 [ m at h . FA ] 4 O ct 2 00 5 Hartman functions and ( weak ) almost periodicity

In recent papers the concept of Hartman (measurable) sets was investigated. A subset H of the integers, or more generally, of a topological group G is called Hartman measurable (or simply a Hartman set), if H = ι(M) for some continuous homomorphism ι : G → C, C = ι(G) a compact group, and M ⊆ C a set whose topological boundary ∂M is a null set w.r.t. the Haar measure on C. This concept turned o...

متن کامل

Characterizations of Vector-valued Weakly Almost Periodic Functions

We characterize the weak almost periodicity of a vector-valued, bounded, continuous function. We show that if the range of the function is relatively weakly compact, then the relative weak compactness of its right orbit is equivalent to that of its left orbit. At the same time, we give the function some other equivalent properties. 1. Introduction. Let S be a semitopological semigroup, let ᐄ be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008